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ABSTRACT

In this report, we demonstrate the use of adaptive homomorphic f il-

tering in exposing objects under light cloud cover. More specifically,

the homomorphic filter invoked is space-varying and is parameterized by

the local mean level of the degraded image which serves as an indication

of the extent of local cloud cover degradation. This approach repre-

sents a departure from other attempts to enhance similarly degraded im-

ages in that they have relied on nonadaptive (long-space) homomorphic

filtering.

We show through some preliminary experiments that the adaptive proce-

dure compares favorably with long-space stochastic homomorphic filter-

ing. In particular, adaptive homomorphic filtering appears to have

greater potential than the long-space methods in exposing objects be-

neath light cloud cover, while it does equally well as an adaptive

high-pass filtering technique. In addition, adaptive homomorphic fil-

tering compares favorably with an iterative homomorphic enhancement

procedure which we have devised to improve results from the one-pass

nonadaptive homomorphic filter.
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1. INTRODUCTION

In a number of different applied problems in optical imaging, a mul-

tiplicative degradation is often introduced in the imaging process. For

example, an image obscured by shadows or light cloud cover can be mo-

deled as the product of a function representing the original object or

scene reflectivity and a "noise" component representing the degradation.

In such problems, the nonlinear procedure of homomorphic filtering

has been used successfully in image restoration and enhancement. In

particular, Oppenheim et al [1] and Fries and Modestino [2] have applied

homomorphic filtering to enhance images whose fine structure has been

obscured by the effects of shadows. The former procedure relies on a

deterministic model of shadow formation, while the latter relies on a

stochastic model which invokes a random field representation of shadows.

In both approaches, a single homomorphic filter is applied to the image

to be enhanced; i.e., one filter is applied on a long-space basis.

A similar long-space (stochastic) approach was taken also by Mitchell

et al [3] in restoring images degraded by light cloud cover. Here a

particular cloud pattern is viewed as a sample function of a random

field. Based on estimated cloud statistics, a fixed, long-space homo-
/

morphic filter was applied over the entire image to expose objects under
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light cloud cover. In neither of these problems (i.e.,restoring images

degraded by shadows or light cloud cover) were the local properties of

the degraded image considered.

In this report, we take an alternate approach to the particular prob-

lem of enhancing images degraded by light cloud cover. As did Mitchell

et al [3], we apply a homomorphic filter. This filter, however, is

adaptive and requires local deterministic quantities; i.e., the filter

is space-varying and is parameterized by the local mean level of the de-

graded image which serves as an indication of the extent of local cloud

cover degradation. This approach is similar in style to the adaptive

image enhancement and restoration techniques of Peli and Lim [4], Lim

[5], Schreiber [6], and Gilkes [7).

The stochastic model of cloudy images invoked by Mitchell et al [3]

is effectively the product of a function of the ideal image and a cloud

transmission function defined over the entire extent of the image. Our

cloudy image model, on the other hand, is deterministic in nature and

relies on dividing the image into a number of overlapping windowed seg-

ments to each of which we associate a particular short-space cloud tran-

smission function. The logarithm of each windowed segment can be divid-

ed into two approximately disjoint spectral bands: the cloud

2



transmission function being low-pass and a function of the image being

high-pass. Although the image contains low-pass information, we shall

assume it is not very significant in exposing object shapes under light

cloud cover. In addition, we depart from a typical assmption that the

desired image itself can be modeled as the product of illumination, a

low frequency component, and reflectivity, a high frequency component.

Rather, we view the illumination component in the same way as we view

the reflectance component, i.e., as having an important high frequency

component due to the interaction of light and ground objects 16].

Furthermore, we assume this high frequency component is approximately

disjoint from the cloud transfer function which is low-pass.

To stage a fair comparison between our approach and that of Mitchell

et al [7], we have attempted to exhibit the best of both techniques.

Toward this end, we were led to an improvement of the latter algorithm.

Specifically, this improvement invokes various iterative techniques for

obtaining a better signal estimate by repeatedly updating the Wiener

L filter required in their algorithm. We have also included in our cam-

parison the result of adaptive high-pass filtering and long-space deter-

ministic homomorphic filtering.



Before proceeding with the development of our new methods and compar-

isons, we review some important ideas and formulate a framework for our

investigations.

2. MODELING THE IMAGING PROCESS

A number of approaches to modeling the imaging process have been pre-

sented in the literature. A more difficult problem is to model the im-

aging process in the presence of light cloud cover. In this section, we

first review one traditional approach to modeling undegraded images.

Two different viewpoints are presented which rely on an illumination-re-

flectivity model. We then enter a stochastic framework in which a model

of Images degraded by light cloud cover will be discussed. Finally, we

present our own deterministic interpretation of cloudy images. As we

shall see in the following sections, each model of a light cloud covered

image leads to a specific image enhancement procedure.



2.1 Deterministic Modeling of Undegraded Images

In the formation of images, the illumination and reflectivity are

combined by a multiplication law [1]:

I(n,m) - i(n,m) r(n,m) (1)

where i(n,m) and r(n,m) are the illuminance and reflectance components

respectively. One assumption is that the illumination varies slowly

(i.e., it contains mainly low frequency components) and the reflectance

is sometimes dynamic and sometimes static and therefore may be regarded

as containing mainly high frequency components. The logarithm operation

separates the multiplicative signal into two additive components:

log[I(n,m)] - log[i(n,m)] + log[r(n,m)] (2)

If a linear amplifier or attenuator with gain a follows the log, the

image output obtained by exponentiating clog[I(n,m)]is given by

1'(n,m) - [I(n,m)]a (3)

When a <1, we obtain a washed out image and when a >1 , the image is

sharpened, but might be saturated [1]. Therefore, if we want to reduce



the dynamic range, which is concributed mostly by the illumination,

while simultaneously increase the sharpness, which is contributed mostly

by the reflectance, we should choose ai as a function of frequency,

i.e., a <1 for low frequencies and a >1 for high frequencies. More spe-

cifically, we would apply a two-dimensional (2-D) high-pass filter

H(u,v) to the 2-D Fourier transform of logII(n,m)]. The cross section

of the shape of the required filter is illustrated in Figure 1. Expo-

nentiating the modified Fourier transform yields an enhanced image.

This procedure for image enhancement, termed homomorphic filtering, was

first proposed by Oppenheim et al [1]. Since the illumination is not

truly low-frequency and the reflectance consists not only of high fre-

quency components but also of low frequency components, the output will

have certain artifacts. It seems that the degree to which those arti-

facts are visible is strongly dependent on the way a changes from a <1

to Ot>l [i].

---------

Fig. 1. Cross section of a filter with variable a
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In an alternate viewpoint, Schrieber [61 hypothesizes that in natural

scenes the illumination function is as essential to perception as the

reflectivity of the object. Both have a broad spectrum, generally with

more power at the low spatial frequencies. The reflectance derives its

low frequency component from the presence of large patches of relatively

constant value. The illumination derives its high frequency component

from interaction between the incident light and the edges and surfaces

of objects, which are at many different angles. Consequently, any at-

tempts to separate these components by long-space homomorphic filtering

will be limited in their success. Rather, an adaptive control of the

low and high frequency components at each point (along with neighboring

points) of the original scene may be preferable for enhancement. Such

processing, sometimes referred to as short-space processing is imple-

mented in the system of Figure 2, as proposed by Schrieber [6]. In this

general processor, we can enhance the high frequencies and reduce the

dynamic range on a short-space basis in regions where it is needed. An

adaptive process in this same spirit could of course be applied to the

logarithm of the image, resulting in an adaptive homomorphic procedure.

(It is interesting to note that Schrieber has shown that under a low-



contrast condition, a single (long-space) homomorphic filter approxi-

mates a single linear filter followed by a nonlinearity.) The sectioned

method that we propose in Section 3 of this report represents a cross

between the long-space homomorphic (with a single filter) and Schrie-

ber's short-space adaptive approach (which effectively invokes a filter

that is changing at each pixel).

LOWS IGHSOUTPUT
.LOW-PASS HIH + /, SIGNAL

ORIGINAL

SIGNAL ... JCONTROL[_

NLA

Fig. 2. Adaptive control for image enhancement.

2.2 A Stochastic Approach to Modeling Images Degraded by Light Cloud

Cover

In the model of Mitchell et al 13], it is assumed that some energy

of the ground reflection passes through the clouds. The energy collect-

ed above the clouds consists of two components: ground information and
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scattering from the clouds. Figure 3 is a simplified model of this im-

aging process. The energy recorded is given by:

s(n,m) - aLr(n,m)t(n,m) + LIl-t(n,m)] (4)

where

L = sum illumination

t(n,m) - transmittance function of the cloud (O<t(n,m)<l) in a

downward direction

a attenuation of the illumination in a downward direction

from the clouds to the ground (assumed constant)

r(n,m) reflectance of the ground

L-SUN RECORDED
ILLUMINATION 

IMAGE

TRANSMITTANCE 
-"-

N CT - IUtON CLOUD

ATTENUATED

,ROUNO

GROUNO
REFLECTANCE

Fig. 3. A simplified model of the imaging process above clouds.
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In order to recover the desired reflectance information, it was as-

sumed that the transmittance function of the cloud and the reflectance

of the ground are stochastic processes. It was also assumed that the

transfer function of the cloud has relatively more energy in low spatial

frequencies. From (4), we can obtain a multiplicative form of the

"noise" and the "signal" given by (5):

L-s(n,m) = tn,m) [L-aLr(n,m)] (5)

By taking the log of (5), we obtain the addition of the "signal" and

"noise" which can be written as

log[L-s(n,m)] = log[t(n,m)] + log[L-aLr(n,m)] (6a)

or

P(n,m) = N(n,m) + M(n,m) (6b)

where

P(n,m) = log [L-s(n,m)] = "signal + noise"

N(n,m) = log[t(n,m)] = "noise"

M(n,m) - log[L-aLr(n,m)J = "signal"

and where P(n,m), N(n,m) and M(n,m) are viewed as stochastic processes.

10
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One approach to estimating the signal from (6) involves the applica-

tion of Wiener filtering. If we assume that the signal and the noise

are uncorrelated (a reasonable assumption here since the formation of

clouds has effectively no correlation with the formation of the ground

images), we can obtain the minimum mean square error estimate of the

signal by filtering the given degraded image with the following optimal

linear filter:

H(u,v) = SMP (uv) / Spp (uv)

= [Spp(uv) - S NN(,v) - MNMM 6(uv)] / Spp(uv) (7)

where,

Sp (u,v) - the power spectrum of the signal plus noise

SNN(u,v) - the power spectrum of the noise

SMP(uv) = the cross power spectrum between the signal and noise

MM - the mean value of the signal

M - the mean value of the noise

6(u,v) - the 2-D dirac delta function



Mitchell et al [3] chose to estimate Spp(uv) as the magnitude

squared of the 2-D discrete Fourier transform of log[L-S(n,m)] where L

is estimated as the highest value in the image. SNN(u,v) was estimated

through an estimate of t(n,m) given by

L-s(n,m)
t(n,m) - (8)

L-G

where G is a constant which ideally should equal the typical ground re-

flection (i.e., the average of aLr(n,m)). The power spectrum of the

noise was then roughly estimated by the magnitude squared of the Fourier

transform of t(n,m). Since the transfer function of the cloud transmit-

tance was considered to possess only low frequencies, the estimate of

this power spectrum was low-pass filtered. Finally, an estimate of MN

and MM can be formed from the initial values of the correlation func-

tions associated with the estimates of Spp(u,v) and SNN(u,v) and the re-

lation given by (6). The cross section of the general shape of the re-

sulting optimal filter is given in Figure 4.

12



Fig. 4. Cross section of the general shape of the optimal Wiener fil-
ter.

The filter has a boost at (u,v)=(O,O) as a result of assuming a non-

zero mean process and an attenuation at the low frequencies. Excluding

the value at (0,0), it has the same shape as that used in the homomorph-

ic filtering procedure of Oppenheim et al [1], described in Section 2.1

i.e., the resulting filter for the stochatic approach leads to a special

case of the filter for the deterministic homomorphic approach. It

should be noticed that in the stochastic approach the resulting filter

is fixed for a specific image and cloud cover, while in homomorphic fil-

tering the values of the filter at the high frequencies are variable

i.e., we can increase them more than in the stochastic approach.

13



2.3 A Deterministic Approach to Modeling Cloudy Images

Our approach to the problem of modeling cloudy images invokes the as-

sumption that images and clouds are deterministic processes. First we

adopt Schreiber's approach [6] which assumes that both illumination and

reflectance contain low and high components and that the high frequen-

cies are important for perception. At the same time, we assume that the

transfer function of the cloud transmittance contains only low frequen-

cies on a short-space basis. We now interpret (6) so that t(n,m) (de-

fined on a short-space basis) is deterministic and contains mainly low

frequencies and L-aLr(n,m) is also deterministic and contains perceptu-

ally important high frequency information. By using these assumptions,

the image aLr(n,m) can be estimated in a deterministic fashion through

homomorphic filtering which reduces the low-frequency contribution of

t(n,m). Furthermore, the estimate can be enhanced through homomorphic

filtering by amplifying high frequency components. We elaborate on this

procedure in the next section.

14



3. EXTENSIONS OF HOMOMORPHIC FILTERING

The assumption that clouds are stationary and approximately low-pass

motivated the long-space stochastic homomorphic filtering approach of

Mitchell et al [3]. However, the thickness of cloud cover certainly

does change over the extent of an image, and, as we stated in the previ-

ous section, seems to exhibit rather deterministic properties. Conse-

quently, an adaptive approach should be better suited to restoring the

desired image, i.e., an approach where the homomorphic filter changes

with local cloud characteristics which are viewed as non-stationary in

nature.

Before proceeding with this adaptive processing, in order to make a

fair comparison, we shall first do the best we possibly can with the

stochastic long-space approach of Mitchell et al. The improvement that

we achieve in their procedure relies on an iterative method of estimat-

ing cloud statistics (this method in fact has been suggested but was

never implemented [31).

15



3.1 The Stochastic Iterative Approach

We saw in Section 2.2 that a cloudy image can be modeled (after a log

transformation) as a sum of noise and signal reflectivity components

given in (6). Note that this model assumes that illumination reaching

the ground hits objects uniformly. We saw, however, that it is not pre-

cisely true due to the different angular arrangement of objects. Ne-

vertheless, this effect will be assumed lumped into the function r(n,m),

since as noted in Section 2, the resulting illumination will contain an

important high frequency component.

The objective of Section 2.2 was to obtain an optimal estimate of the

term log[L-aLr(n,m)] in the presence of the "colored noise" term

log[t(n,m)]. We found that we could do this theoretically by applying a

Wiener filter of the form

H(u,v) SMp(u,v) / Spp(U,V) (9)

= [Spp(U,V) - SNN(UV) - MNMM 6(u,v)] / Spp(uv)

where the components of (9) are defined in Section 2.2. Spp(u,v) was

approximated by the squared magnitude of the Fourier transform of the

noisy signal, and SNN(u,v) was given by the crude approximation given in

(8).

16



An alternative approach involves iteratively updating the estimate of

the spectral density of the clouds. Since an estimate of the reflec-

tance function aLr(n,m) is required for the cloud spectral density

(see(8)), we can use an estimate of aLr(n,m) to update the estimate of

the cloud spectral density. The Wiener filter in (9) is then updated

and the original cloudy image is again filtered. If we do this repeat-

edly, the resulting iterative process may converge to a better estimate

than generated by the one step process. In the space domain, the ini-

tial cloud estimate is given by

L-s(n,m)

t (n,m) (lO.a)1 ~ L-G 0

where G0 is a constant (see Section 2,2). From tI(nm), we obtain a

better estimate of aLr(n,m) denoted by G1 (n,m), and the iteration is

continued as

L-s(n,m)

tk+l(nm) - (lO.b)
L-Gk( n,m)

where Gk(n,m) is the kth estimate of the function aLr(n,m). Figure 5

outlines the procedure. Figure 6 illustrates a modification of this it-

17



eration where rather than filtering the original cloudy image on each

iteration we filter the updated signal estimate (i.e., filter Gk+l(n,m)

by using Gk(n,m) to create the new signal estimate Gk+2 (n,m)). In the

space domain, the iterative cloud estimate is given by

L-Gk+l(n,m)

tk+2 (n,m) k-1,... (1l.a)
LGk (n,m)

The initial conditions tl(n,m) and t2 (n,m) are generated as

L-s(n,m)
t (n,m) = - (ll.b)

L-G0

where GO is a constant

and

L-s(n,m)
t 2(n,m) (ll.c)2 L-GI(n,m)

In theory, this procedure is not as sound as that which filters the ori-

ginal noisy signal, but as we will see, it appears to generate a better

restoration. Since Gk+l(n,m) is a better estimate than G (n,m) of the
k~l k

original image, we might use it to obtain a better estimate of the cloud

transmittance in order to filter Gk(n,m) (i.e., swap Gk+l(n,m) and

Gk(n,m) in ll.a).

18



OUTPUT 1112258-111

Fig. 5. Iterative procedure which operates on the original cloudy im-
age.

CLOUD WIENER 
6 k+2

EST IMATOR Ah4 FILTER DELAY DELAY
2~ kk

OUTUT 1 -2259- N

Fig. 6. Iterative procedure which operates on an updated image esti-
mate.
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3.2 The Deterministic Adaptive Approach

Consider now applying a short-space window to the noisy signal P(n,m)

in (6). More specifically, let's assume the window takes on a pyramidal

shape, has a MxM square region of support, and is shifted over the data

at intervals of half its width (i.e.,M/2) in both the n and m direc-

tions. If w(n,m) denotes the pyramidal window centered at the origin,

then a particular windowed segment takes on the form:

Pk(n,m) = w(n-JM/2, m-kM/2)P(n,m) (12)

where the window w(n,m) has the following desirable property:

E w(n-jM/2, m-kM/2) - 1 (13)

j k

Consequently, the sectioning procedure is reversible; i.e., if no pro-

cessing is applied to each section, then the image can be recovered ex-

actly.

Applying an adaptive filter which operates on each segment Pjk(nm),

we obtain

Pj,k(nm) - Pj,k(n,m)**hjk(n,mt) (14)

- [w(n-JM/2,m-kM/2)P(n,m)]**hj,k(n,m,t)

20



where the parameterized filter impulse response hj,k(n,m,c) is a func-

tion of the vector a, which is a set of parameters dependent on the lo-

cal cloud characteristics. In particular, e is a function of the DC

level of the windowed signal which reflects the cloud density under the

window. Further, the filter is high-pass where the shape and amplitude-

depend on a. -The following section will elaborate on this design. From

(6), the filtering process is then given by

Pj,k(nm) - [w(n-jM/2, m-kM/2)[log(t(n,m)+log(L-aLr(n,m))]]

*hJ,k(n,m,a) (15)

We assume that the window is "sufficiently smooth" so that the low-

pass nature of the noise term log[t(n,m)] and the high-pass nature of

the signal component log(L-aLr(n,m)J are preserved after windowing.

Consider now the case where the noise and the signal are exactly dis-

joint tn frequency, and the filter hj,k(n,m,a) is an ideal high-pass

filter whose non-zero energy band matches that of the signal. Then we

can write

PJ,k(nm) -w(n-JM/2, m-kM/2) log[L-aLr(n,m)] (16)

21
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Since the noise and signal are only approximately disjoint, the noise

term will not be entirely removed, and since the filter is not an ideal

high-pass, the signal will not remain intact. Alternately, when

hj,k(n,m,() adaptively amplifies the high frequencies and attenuates the

low frequencies, the cloud will only be partially suppressed (while also

changing the low frequency component of log(L-aLr(n,m))*) and the high

frequency detail of the desired signal will be enhanced** (while boost-

ing any cloud energy in this region). The relation in (16) is then only

an approximation which represents an estimate of the desired windowed

signal (or desired enhanced signal) along with the effects of any resi-

dual cloud noise. The parameters a , in hjk (nma), which rely on the

local cloud density should be chosen so that the noise is suppressed Ot

much as possible, while the estimate of the undegraded image is optimal

in some sense.

* We assume, however, that these components are not perceptually impor-

tant.

** As shown in the following section, under a low contrast condition

(i.e., with thick clouds) and with a filter magnitude greater than unity
in high-frequency regions, the local constrast will be enhanced.

22



With these approximations in mind, our reconstruction procedure which

we refer to as overlap-add can then, with the use of (13), be written as

P(n,m) - w(n-MJ/2, m-Mk/2) log(L-aLr(n,m))
j k

log[L-aLr(n,m)] Z Z w(n-Mj/2, m-Mk/2) (17)
j k

- log[L-aLr(n,m)]

This procedure is illustrated in Figure 7. Finally, to obtain an esti-

mate of the signal, we exponentiate and recover aLr(n,m) from

logIL-aLr(n,m) F .

Wlk (n,m) DC WIn m

HPk P(nm) MEAN DC
VALUE L

WLT - TRIANGULAR WINDOW

WLR - RECTANGULAR WINDOW

Fig. 7. Image restoration by deterministic homomorphic filtering.
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3.3 Filter Design

From the simple model of imaging above clouds, we have concluded that

it is desirable to adaptively attenuate the low frequencies and to am-

plify the high-frequencies of log [L-s(n,m)] given in (6). In order to

proceed with the high-pass filter design, let's first look more careful-

ly at the process of filtering (6) adaptively. To simplify the compli-

cations due to the logarithmic operation, we shall approximate (6) by

its Taylor series expansion. This is an accurate approximation under a

low contrast condition. In addition, we shall extend the model in (6)

by allowing the downward attenuation factor a to take on a space-varying

characteristic of the form a(n,m). This generalization accounts for the

possible changes in illumination reaching the ground due to the varying

atmospheric and other effects from the clouds to the ground. Thus, we

account for a varying cloud thickness through t(n,m) and other nonsta-

tionary effects (i.e., fog, haze, etc.) through a(n,m).

The windowed segment in (15) then becomes

p J~k(n,m) Z w J,k (n,m ) [log[t(n,m)]

+ log[LJ* a(n,m)r(n,m)] (18)

24



If t(n,m) and a(n,m) are slowly-varying over the window wj,k(nm), then

in the frequency domain our filter should decrease the large negative

low frequencies of the Fourier transform of log[t(n,m)] and should in-

crease the highs because of the attenuation of r(n,m) which hclds per-

ceptually important high-frequency information. Returning to (4), we

see that we have effectively enhanced the local contrast in areas of

thick clouds by reducing the shift in the local brightness level from

light bouncing off clouds, and by compensating for local attenuation

from passage of light through clouds.

Our filter, therefore, should be high-pass with three specific desi-

rable characteristics. First, the high-frequency end of the filter

should increase monotonically as the cloud thickness increases. Furth-

ermore, we may wish to overcompensate for high-frequency loss (i.e., en-

hance rather than simply restore the image) by boosting the highs beyond

what would occur in an undegraded (cloudless) image. Secondly, we want

also to increase the low-frequency end with increasing cloud thickness.

This will, in effect, decrease the low-frequency negative contribution

due to the log[t(n,m)] component. We note that it may be desirable to

alter the high-pass filter so that there exists a narrow pulse at DC to
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accomplish the low-frequency boost*, We found, however, that this fil-

ter characteristic was not necessary to achieve high-quality results.

Finally, we may also wish to broaden the bandwidth of the filter in the

high-frequency range as the cloud thickens to compensate for other forms

of high-frequency loss, as for example blurring due to the scattering of

light through clouds. A filter which has the desirable shape and is

computationally efficient is a circularly symmetric Gaussian which is

shifted to (u,v)-( 7T,Tr ). A cross section of this filter is shown in

Figure 8 and the filter is given by

H(u,v)- A exp + C (19)

A+C------

0 2W

Fig. 8. Cross section of the desired high-pass filter.

• The resulting bimodal filter then resembles that derived through the

stochastic approach of Mitchell et al [3].
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The filter size was chosen to be fixed at 16x16. The filter parameters

A, B, and C are functions of the value of the Fourier transform of the

windowed data at DC, i.e., at (u,v)-(O,O), which is an indication of the

cloud thickness. To determine the parameters, we first specify the va-

lues at (u,v)-(O,O) and at (u,v)=(7,7) for DC-O and for DC=255. Each of

the two pairs (i.e., one pair for the value at (u,v)=(O,O) for DC=O and

DC-255 and the other pair than for the value at (u,v)=(7,7 ) for DC=O and

DC-255 ), is then quadratically interpolated according to the formula

Y (Y2 - Y 1
) D2 / 2552 + Y (20)

where D denotes the DC level which takes on values from 0 to 255 and

where Y2 and Y denote two extreme values, one at (u,v)=(O,O) and the

other at (u,v)-(7,). This yields the filter endpoints for DC levels

between 0 and 255. A quadratic interpolation for computing the desired

intermediate values was used rather than a linear interpolation because

a larger range of low level of luminance needs almost no processing.

The filter parameters A and C in (19) are then chosen so that the filter

meets these computed endpoints. The parameter B in (19) is computed di-

rectly in terms of the quadratic interpolation formula (20) and two de-

sired extreme values.

27



4. EXPERIMENTAL RESULTS

4.1 Stochastic Approach (original + iterative)

This experiment was performed in order to compare the stochastic ap-

proach to the various deterministic procedures. Figure 9 is the result

of the algorithm of Mitchell et al where the estimate of the typical

ground reflection G(n,m) was chosen to be a constant equal to 140. The

processed image seems to contain primarily the high frequencies of the

unprocessed image.

By using the iterative approach of (10), one can improve the estimate

of the noise spectrum. Figure 10.a contains the result after 3 iteral

tions. Figure 1O.b illustrates the result after three iterations which

improve the estimate of the noise while processing the image estimate

itself (see the iterative procedure given in (11)). One can see that

the second form of iteration appears to yield a perceptually more desi-

rable result. Finally, Figure 1O.c depicts the result after using 4 it-
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erations of (11), but where Gk+l(n,m) is used to process G k(n,m) (i.e.,

GK+l(n,m) and Gk(n,m) in (11) are swapped). All the results (Fig. 9 -

Fig. 10) are presented after histogram equalization.

(a) (b)

Fig. 9. a) An original cloudy image b) The result of the stochastic approach
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(a) (b)

(c)

Fig. 10. a) Result of using the iteration in (10). b) Result of using the

iteration in (11). c) Result of using (11) but where G k+1 (n,m) Is used to

process G k(n,m).
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4.2 Long Space Homomorphic Filtering (Deterministic)

In this section, long-space homomorphic filtering was examined with

two different filters. Each has a Gaussian shape as described in Sec-

tion 3.2. The parameters of the first filter are A-3.65, B-320, and

C-2.15 and its shape is given in Figure 11. The result is illustrated

in Figure 12.

2

- 1-2 261-R

3

IIVA

0

Fig. 11. Cross section of the filter Fig. 12. Result of the long space
used in the long space homomorphic homomorphic filtering by using
filtering HI(w ) in Fig. 11.
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The second filter, which sharpens and attenuates more than the first,

has the shape and parameters given in Figure 13 and the processed image

is illustrated in Figure 14. The two results are presented after histo-

gram equalization. From these results, we can see that there Is some

sharpening but most of the cloud was not removed and, therefore, some

objects were not exposed.

112262--.
2

33

0

Fig. 13. Cross section of the Fig. 14. Result of the long space
filter used in the long space homomorphic filtering by using
homomorphic filtering. 112()in Fig. 13.
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The value at (u,v)-(O,O) for the two filters is less than one alt-

hough theoretically it should be greater than one as in the adaptive ho-

momorphic approach. Since we apply the filter on a long space basis and

rescale the result into the range of 0-255, only the relation of H(O,0)

to H( iT, 7) is important as illustrated in Figure 15.

RANGE OF GRAY LEVELS
IN THE ORIGINAL IMAGE

0 255

RANGE OF VALUES IN THE
PROCESSED IMAGE

WITH H(O,O) <1
A

i- ,. I 4

0 -- 255 /
/ /

- I

- - / RANGE OF VALUES
,I AFTER RESCALING

0\ 255

t I
/ I

i I

RANGE OF VALUES IN THE
S TPROCESSED IMAGE

WITH H(O,O) > 1

0 255

Fig. 15. An example that illustrates the importance of the relation
between 11(0,0) and H(7r,nr).
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4.3 Adaptive Homomorphic Filtering

in this approach, a pyramidal window of size 16x16 was chosen and the

range of parameters is given in Table I. Table I requires some elabora-

tion. First, we choose to allow the value of the filter at (u,v)=(O,O)

to take on values less than unity in order to brighten extremely dark

areas of the specific image which we are processing. Recall from Sec-

tion 3.3 that the signal is log[L-S(n,m)] (i.e., bright regions are

transformed into dark regions and vice versa). In such a case an in-

crease in the value of the high-pass filter at (0,0) lowers the result-

ing mean level of the image in the space domain). Secondly, in order

nut to over-brighten the very dark areas of the image we have set the

value of the filter at (u,v)-(O,O) to about 0.8 for all values of DC

less than 170, thus not allowing the lower limit of 0.53 to be reached.

These parameter values were obtained after some exhaustive twiddling to

obtain an "optimal" enhancement. We should note that the quality of the

resulting enhanced image appears to exhibit a large sensitivity to small

perturbations in the chosen parameters.

The local filter was generated by interpolating between the two ex-

treme filters (shown in Fig. 16) according to the interpolation formula

given in (20). The result after histogram equalization is illustrated

in Figure 17.
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TABLE 1

R.SNGE OF PARAMETERS FOR THE ADAPTIVE HIOMOMORPHIC FILTER

DC 0 255

('n T) 1.1 1.5

(0,0) 0.53 1.2

B 5 20

I

2 2

Fig. 16. Two extreme filter shapes Fig. 17. The cloudy image processed
which define the limits of the by the adaptive homomorphic filter
local filters use t in the adaptive given in Fig. 16.
homomorphic filtering approach.
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4.4 Adaptive High-Pass Filtering

In the final experiment, w.e applied adaptive high-pass filtering to

the windowed image s(n,m) i (4), rather than the windowed logarithm of

(L-s(n,m)) in (6). The hip: frequency end (i.e., (u,v)=(T' 
, )) of the

high-pass filter was incruai, ionotomically with cloud thickness, while

the low-end (i.e., (u,v)=(Y, ;)) was decreased monotonically. It should

be pointed out that these -: Ameter choices were based on the additive

model of (4) rather than tbit multiplicative model of (5)*. The extreme

filter values (again choseit by twiddling) and the resulting enhanced *m-

age after histogram equali,'tion are depicted in Table II and Figure 18,

respectively. From Figure 23 one can see the result is sharper than the

result from adaptive homomorphic filtering but exhibits mjre noise espe-

cially in the darker regions.

* Nevertheless, applying a imolinearity (for dynamic range manipulation)

in cascade with a high-pass filter, from Schrieber's studies [6], we

suspect that under a low-cucirast condition, the resulting enhanced im-

age should approach that obtained from adaptive homomorphic filtering.
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Fig. 18. The cloudy image processed by the adaptive high-pass filter
given in Table II.

TABLE II

RANGE OF PARAMETERS FOR THE ADAPTIVE HIGH PASS FILTER

DC 0 255

(Tr, 7) 0.3 1.8

(0,0) 0.9 1.1

B 5 20
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4.5 Conclusions

In this section, we have presented some informal preliminary experi-

mental results to illustrate the various enhancement procedutres which

were proposed in the earlier sections of this report. Inspection of

Figures 9 through 17 illustrates that the adaptive homomorphic procedure

does better in removing light cloud cover (i.e., in exposing objects un-

der light cloud cover) than does the stochastic iterative or long-space

homomorphic approach.

Furthermore, the adaptive homomorphic procedure appears to yield a

less noisy result since a very high-frequency gain is not applied over

the entire image. On the other hand, the result from the adaptive homo-

morphic procedure contains less high-frequency detail and somewhat more

low-frequency "patchiness" (probably due to the sensitivity of the local

mean level arising from the nonlinear logarithmic operation) than that

from the two non-adaptive techniuques.

When compared with the adaptive high-pass, the adaptive homomorphic

yields a less noisy result, but also with less high-frequency detail,

particularly in darker regions. This is probably due to the fact that
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in adaptive high-pass filtering, the high-frequency gain is applied di-

rectly to the image, and thus its effect is not (potentially) attenuated

by the presence of a nonlinearity. Finally, the adaptive homomorphic

procedure appears to do as well as the adaptive high-pass algorithm in

exposing objects under light cloud cover.

5. SUMMARY AND DISCUSSION

In this report, we have demonstrated the use of adaptive homomorphic

filtering in exposing objects under light cloud cover. The adaptive

filter Is high-pass in nature and is parameterized by the local mean

level of the degraded image which serves as an indication of the extent

of the local cloud cover.

We have shown through some preliminary experiments that this approach

compares favorably with the long-space stochastic (iterative) and homo-

morphic approaches. More specifically, the adaptive homomorphic proce-

dure appears to have a greater potential than the long-space methods in

exposing objects beneath light cloud cover while it does equally well as

the adaptive high-pass technique. Furthermore, while the adaptive homo-
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morphic scheme does well in suppressing high-frequency noise, it exhi-

bited less high-frequency detail than the additive high-pass filtering

procedure.

This report has generated a number of additional questions. Specifi-

cally, developing methods to suppress noise while exposing objects (and

enhancing the detail of these objects) is of paramount importance. The

adaptive homomorphic scheme appears to have a greater potential in sup-

pressing noise than for example adaptive high-pass filtering. One pos-

sible reason for this is that adaptive homomorphic filtering performs

local contrast enhancement on a nonlinear function of the image while

the adaptive high-pass filtering can be approximated by a differentia-

tion operation applied directly to the image.

Another important question involves the way in which the image is

segmented. We have in this report divided the image into overlapping

square segments. An alternate method is to process the image adaptively

on a point-by-point basis (similar to the procedure of Pell and Lim

[4]). It is important to understand the differences in these approach-

es, with respect to their computational and noise suppression character-

istics.
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